
Iteration in Java - while loops and for loops

1. The for statement (aka the for loop)

A. In this example, the loop counter variable i is declared outside of the loop and initialized in the
initialization statement of the loop. Since it is declared outside the loop, it is in scope after the loop
exits, so its value can be printed to the console. (See fig. 2.)

fig. 1

B. Here, the loop counter variable j is declared and initialized in the initialization statement of the loop.

fig. 2

C. The update statement is not limited to increments or decrements. Any valid assignment statements
can be used for the initialization and update.

fig. 3

2. The while statement (aka the while loop)

A. The while loop in this example is equivalent to the for loop in the first example. To translate a for
loop into a while loop, where should the update statement of the for loop be placed within the while
loop?

fig. 4

B. This example demonstrates the importance of being careful with loop conditions. Can you explain
why the last two values of j are -2147483648 and 0? If the conditional break is removed, what will
happen when the program runs? What loop condition would ensure the loop terminates?

fig. 5

Comprehension check

1. Be able to explain the flow of control from the beginning to the end of a for loop, step by step, using
the terms we learned in this lesson (initialization, condition, update, body).

2. Know how to translate a for loop into an equivalent while loop.

3. Be aware of loop conditions, to avoid infinite loops.

4. Understand the visibility of the for loop counter variable when it is declared before the loop and
when it is declared in the initialization statement of the loop.

3. Using the while loop condition to filter out out-of-range user input values.

fig. 6

4. Using a while loop condition to detect the end of a list of user input data values. The user can input
a reserved sentinel value, which is not a possible data value, to indicate the end of the list.

fig. 7

5. This example uses nested while loops to combine the previous two examples (of sentinels and input
filtering) into a single program that allows the user to input a list of data terminated by a sentinel value,
from which values that are out of range are filtered out. A for-each loop is used to display the list.

fig. 8

Lab Exercise

 Write a program that chooses a number between 1 and 1,000,000 and asks the user to guess the
number. If the guess is correct, the program should terminate. If the guess is incorrect, the program
should ask the user for another guess. At the end, display the number of guesses the user took to get
the right answer.
 For extra credit, determine an upper bound on the number of guesses needed to find the number.
Compare the number of guesses the user took to find the number with this upper bound to determine a
score.
 See fig. 8 for Scanner code and loop structures that you might find helpful.

